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I. INTRODUCTION 

This lecture talks about the analytic computation of the distortions of beam shapes 
in the horizontal and vertical phase spaces due to the introduction of nonlinear mul- 
tipoles. 

When we say that the lattice of a storage ring is perfectly linear, we mean that 
there are only perfect dipoles and normal quadrupoles. The equations of motion 
in the horizontal and vertical planes are then linear and decoupled. The lattice is 
described completely by the beta-functions P=(s) and B,(s) which are periodic around 
the ring and s is measured along the ideal closed orbit. One can also introduce the 
other parameters 01$(s) and cxr(s) and the Floquet phases 4=(s) and 4,(s) which are 
related to the p’s by 

(1.1) 

dL(s) = J’ & ) (1.2) 

where u can be z or y. After one complete revolution around the ring, the change in 
$J, is 2av,, where V, and vy are called the horizontal and vertical betatron tunes. In 
one of the transverse planes, the displacement U and the displacement angle U’ are 
described by 

Pu 

( ) 

112 
U(s) = A, - 

PO 
cos(hl + 40) 3 

u’(s) = -du(P&)-“2[~U cos(A + 40) + sin($, + 40)] , (1.3) 

where 4s is some initial phase. We have deliberately put in some reference PO so that 
A, retains the dimension of some initial amplitude. If we record the positions of the 
particle at one particular point along the ring for many turns, we find that they lie 
on an ellipse in the transverse phase space as in Fig. 1. In fact,the equation of the 
ellipse can be obtained from Eq. (1.3) by eliminating $,, 

4 _ u* + (au-u + P”U’)2 
PO - P” (1.4) 

The area of the ellipse is 
rdz 

E, = 2 
w ’ 

(1.5) 

which is called the emittance of the beam in the u-directional phase space and is 
obviously an invariant of motion. Thus, knowing /3,,(s) along the ring, one knows 
exactly the shapes of the beam ellipses in both transverse phase spaces anywhere 
along the ring and no tracking is required. 

From Eq. (1.3), the /3’s have their physical meanings of oscillation amplitudes. 
For example, in the bunch-bunch collision region, we want small bunch sizes in both 
transverse directions and we think of a design with small p’s at that location. In 
short, we understand the patterns of focussing which generate the B’s. Therefore, 
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Figure 1: Beam shape in a transverse 
phase plane. The lattice is perfectly 

linear, the emittance is c, 
and y = (1 + az)/:8. 

the ,8’s are in fact qualified as a design tool rather than a computational device for 
avoiding tracking. 

Unfortunately, no machine is perfectly linear. There are systematic sextupole 
components in dipole fields from steel saturation, remanant fields, persistent currents. 
eddy currents, and random sextupole components due to field errors. Of course, there 
are also sextupoles placed around the ring on purpose to counteract the above and to 
modify chromaticity. Higher multipoles are also possible; for example, the octupole 
components from beam-beam collision. The theory therefore becomes nonlinear. Does 
this mean that we shall lose all our prediction of the beam shape by the beta-functions? 
The answer is no. For a large-size storage ring, the need for sophisticated diagnosis 
of minor faults demands a rational beam behavior. Such rational behavior is also 
required for a beam pipe of small bore so that the magnet size and consequently the 
cost can be reduced. All these imply a machine that is as linear as possible. As a 
result, perturbation theory can be used away from resonances. Collins’ has proposed 
a set of distortion functions for each order of the perturbation. These distortion 
functions are closed, i.e., periodic. They are independent of the beam amplitude a,nd 
are very similar to the beta-functions and alpha-functions of the linear theory. Of 
course, the beam profile is not so simple now, because horizontal and vertical motions 
are coupled together. So it no longer manifests itself as an ellipse in each transverse 
phase space. Instead, it becomes a four dimensional hyper-egg and we can only talk 
about its projections onto the transverse phase planes. However, these distortion 
functions can give us the exact projections. They can also give us two important 
numbers: the transverse betatron tuneshifts Av, and Av,. 

In the Section II, we shall first preview these distortion functions, the formulae for 
their computation, and how they can be used in computing the phase-space projections 
of the beam and the tuneshifts. In Section III, we shall derive all the formulae in 
Section II from a Hamiltonian theory. Lastly, in Section IV, some applications are 
discussed. 
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II. DISTORTION FUNCTIONS 

If we use the Floquet phase $J, as the independent variable instead of s, the motion 
of a particle in the transverse phase space, Eq. (1.3), becomes 

u(h) = Au cos(cL) , 

u’(A) = --A, sin(&) , (2.1) 

where the prime is now derivative with respect to &,, which is contained in the 
instantaneous betatron phase & = $, + c$,,, and 

PO 
i ) 

112 
u= - u, 

P” 
u’ - 01”U = (popu)“~U’ 

In this way, the ellipses become circles. 
With the introduction of some weak sextupoles, the circles are distorted into 

u = 6~ + (A, + U,) cos(du + 6&J , 

u’ = 6u’ - (Au + LA) sin( 4% + 64,) . 

The change in closed orbit is 

6x = 2(d;B - A;&) , 6x’ = 2(d;A - dzA1) , 

6y=O, 6y’ = 0 

The changes in phase-space circles are 

& = d:(Gs - Gi) - d;(G+ - G-) , 

(2.3) 

(2.4) 

(2.5) 

64, = A,(& + F,) - (d:/A,)(F+ + F-) , 

&A, = -2d,d,(G+ + G-) , 

64, = -2d,(2F + F+ + F-) P.6) 

In above, the functions F,, Gi, F3, Gs, F, F+l G+, F-, and G- are given in terms 
of the distortion functions &, Al, B3, A,, B, A, B+, A+, B-, and A- in Table 1. 
We note that the F and G are just like a rotation of the vector (B,, A,) by a generic 
angle 01. By generic, we mean, for example, the substitution of 01 = 24, + 6x in F+ 
and G+. The strengths of the sextupoles m, are defined as 

S = lim 
B”e 1 1 y. 

t-0 2(Bp) 

(2.7) 

(2.8) 
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name angle strength tune 

B, -4, LY met VW F(a) G(a) 

Bl 4, 314 va2 Fl=Alcoscu+B1sina 

AI G1 = Alsin - B1cosol 

B3 34s s/4 3& Fz = Aacosa + Bssina 

A3 G, = Assincu - BScosa 

B A 4, g/4 4 F=iicosa+L?sinol 

B+ WJ, + 4, s/4 2v, + u, F+=A+cosa+B+sina 

A+ G+ = A+sina- B+cosa 

B- 24, - 4, s/4 2v, - v, F- =A-cosol+B-sina 

A- G-=A-sinol-B-cosa 

Table I: Distortion functions for fist order sextupoles 

Here, B:z is the local gradient of sextupole field, .! its length, and (Bp) the magnetic 
rigidity of the particle. 

Each pair of distortion functions can be computed using the following criteria. In 
the region between two sextupoles, (B,, A,) rotates like a vector by the angle a. On 
passing a sextupole, B is continuous while A jumps by an amount m, which may 
be s/4 or S/4. Finally, (B,, A,) have to close after one revolution of the ring. The 
explicit formulae for the set (B,, A,) at location $e are 

BdGa) = 2si;av c me COS(llL,k - &I - X%) 0 I I’d% - $A I: 27% , 0 b 
A,(&) = B;(k) 0 < Ih - &.I < 2rve 1 (2.9) 

where the summation is over the location of each sextupole k. 

The first-order perturbation produces no tuneshifts. The lowest contribution 
comes from the second order: 

2aAvs = -2 ~(Bzs + ~B,s)A. - A; c( B+s + B-s - 2B,+ , 
k k 

‘hAvy = -A: x(B+s + B-S - 2B1S)k - 2 z(B+s - B-s + 4B& (2.10) 
k k 

Similar expressions can be written for skew quadrupoles, skew sextupoles, normal 
octupoles, skew octupoles, etc. 
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III. HAMILTONIAN DERIVATION 

Collins’ has given a derivation of all the formulae in Section II. However, his 
derivation includes an a priori assumption of the closure (periodicity) for the distor- 
tion functions. An alternative derivation is the Hamiltonian method.*J 

III.1 Floquet Transformation and Action-angle variables 

We start from the Hamiltonian describing the motion of a single beam particle, 

HI = ;P: + ~z(s)xz] + ;[P; + IC-~(~)Y~] + &(X3 - 3XY2) ( (3.1) 

where P, and Pg are the canonical momenta conjugate to the horizontal and vertical 
displacements X and Y, K,(s) and I’ ( ) L, s are proportional to the restoring forces due 
to the ring’s curvature and the field gradients of the quadrupoles. The last term gives 
only the normal-sextupole potential. Other terms, such as skew quadrupole, skew 
sextupole, and higher multipoles have also been considered4 but will not be included 
here. 

Without the sextupole term, the Hamiltonian (3.1) describes two ellipses in the 
transverse phase spaces as given by Eq. (1.3). W e next perform a canonical transfor- 
mation into the Floquet space so that the ellipses become circles as given by Eq. (2.1). 
The generating function is 

112 
P,u + $2 

0 I 
(3.2) 

The new Hamiltonian becomes 

In above, the independent variable s has been changed to the more convenient, 0 = 
s/R, where R is the average radius of the storage ring. Use has also been made of 
the relation 

(3.4) 

which defines the beta-functions in terms of the restoring forces Ii, and 1iy. This 
Hamiltonian is now solved exactly to zero order in sextupole strength by canonical 
transformation to the action-angle variables I,, a, and I,, oy. The generating function 

Gz(G,P~,~,,P,;@) = c ;Po&-ot[Qu(@) + ~1 (3.5) 
u=z,y 

is used to obtain the transformation 

u = GWO)~‘* 4&J@) + 4 , 
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Pop, = -(2LPo)““sin[&,(~) + 4 , (3.6) 

where &u(Q) = A(@) - 0, Pop, = duld~u and is denoted by u’ in below. The 
definition of the Floquet phase $, is given by Eq. (1.2). After the transformation, 
the new Hamiltonian becomes 

Hz = vzIz + z+,Iy + sextupole terms (3.7) 

III.2 Expansion into Harmonics 

We note that QU(6’) is periodic. Thus, treating I, and a, as B-independent, the 
sextupole terms 

*HL b 3(&z 4 a,) + 3 COS( Qc + a,)] 

-(2L~=)‘la(2~~~~)~[2 cos(Q, + a,) 
+ cos(2Q, + Qz + 2a, + a,) + cos(2$, - Qz + 2a, - a,)] (3.8) 

can be expanded into harmonics. Take for example the cos(QZ + a,) term, which can 
be written as 

(~r,/3,)3’2~;~~) [A&z + a=) + ,-;(Qz + 41 = 

(21z)3’z/?;‘z 

where the harmonic amplitude is 

&n = -& 1,” &‘z (2)“” i(Qz + a,) + id (3.10) 

For a thin sextupole of length I! at location k, the strength is defined as 

sk + [g (iz)“‘], or Sk =;li [g (yy], (3.11) 

Then we get 

e,,, = &~,,,i(Qz+~%. 
k 

(3.12) 

Doing this for every term, we get 

*HL = (~&)~/~/3~‘~ x(A3,,, sinqsm + 3A1, sin 41~) 
m 

- (2~~.)“‘(2~~)~~“~(2&, sinp,, + B+, sinp+, + Be, sinp-,) , (3.13) 
m 



where 

and 

Qlrn = a, + cyltn - m$ , 

q3m = 3% + CY3m - 77x0 , 

PI, = a, + Ph - mB , 

Pi771 = (2% f a,) + Pfm - m0 , 

“Le im, _ 2 
-24*, c ske ;(Qz + m8)k 

Asme i&3, _ z 

-24n, c 
ske i(3Qz + m@)k 

B,,ehn = i i(Qz + m@)k 
&‘kC , 

BAme&m = L 
8?r T jke 

QQ, f Qz + m@)k 

(3.14) 

(3.15) 

In above, the harmonic amplitudes 4i,, A3,,,, Bi,, B*,, and the phases oi,,,, 
03,,,, &,,, &,, are real numbers. 

III.3 Moser Transformation 

For the first-order beam shape, we can solve the equations of motion obtained 
from the Hamiltonian H3 to the first order. However, because we are interested in the 
second-order tuneshifts also, it will be advantageous for us to make another canonical 
transformation from (a,, IU) to (b,, Ju) so that the J,,‘s become constants of motion 
up to first order in sk or Sk. This is called a Moser transformation with generating 
function (derived in the Appendix) 

G~(Q,, Jz, ay> Jy; @I = a,Jz + ay Jv 

-wz)3’2P?2 F ( mA_3;vz co3 Q3m + ;=yr cos am) 

+ P.7*)“2PJJP;“~ (;“-‘-, COSPl, + mBJ;+ COSP+* + mBI-,- COSP-,,) 1 

X3.16) 

where V+ = 2v, f v,. By definition, the new Hamiltonian is 

H4 = vzJr + qJy + *H,lsex , (3.17) 

where AH,,/,,, does not contain any zero-order or first-order terms sk or Sk. The 
first-order changes in I, and a, are therefore given by 

SI, = I, - J, = $ - J, , 
” 
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aG3 
6~ = a, - b, = a, - aJ 

” 
(3.18) 

Explicitly, they are 

61= = (~~z)~‘*L#* F ( J?ivz sinqh + ,““_1-, 
z 

sin qlm) 

-(21z)“‘(21,)~~‘* F ( z”zS sinpl, + mB_+mV, sinp+, - /I.nV_ sin/l+) , 

‘4 = -2(2rz)“2(%HY F ( mB_CL+ sinp+, + mBIT- sinp-,) , 

6~ = 3(2uW* F ( m2;, cos q3m + ,“1-, cos am 
z 

) 

-PL)-“2(2r,)~~“~ (z”-‘m, COSPl, + mB_+mv, COSP+, + mBI;- cosp-,) , 

6a, = -2( 2r,pp c ,““_1-, CO3P1m + 
B+vn 

m - V+ cos Ptm + 
B-, 

m - Y- 
cosp-, 

m z ) 
(3.19) 

These are related to the changes in amplitudes and phases. Recalling from Eq. (3.6) 
that 

21 = Au cos[Qu(@ + G] , 

u’ = -A, sin[QU(0) + a,] , 

where 

A, = (2LPo)“’ , 
we have changes in amplitudes 

(3.20) 

(3.21) 

(3.22) 

A bar has been put on top of 62, because it is defined by 

u = (Au + 62,) cos(du + 66,) , 

a’ = -(AU + 62,) sin(& + 64,) , (3.23) 

which is different from the drl, defined in Eq. (2.3) w h ere the closed-orbit distortion 
terms have been included. As for the angle variable a,, if we solve the Hamiltonian 
H3, we get 

da, dH, -=- 
do dI, 

= V, + sextupole terms (3.24) 

Thus, for the unperturbed part, 

a,(@) = uUti + constant (3.25) 
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Here, the constant should be chosen as & - $,,, where &(f?) is the instantaneous 
betatron phase and r&(S) is the Floquet phase designating the location at the point 
8. Although both of them depend on 0, their difference is o-independent. Such a 
choice of the constant is necessary, because substitution of 

a., = d - tiu + 4, = 4u - Qu (3.26) 

into Eq. (3.20) gives 
u=ducos&, 

u’ = -A, sin 4, , (3.27) 

exactly the same as Eq. (2.1), where 4” really denotes the instantaneous betatron 
phase. Therefore, the change in the angle variable a, is just the change in the instan- 
taneous phase aside from closed-orbit distortion; or 

SJ, = 6a, (3.28) 

III.4 Summation of Harmonics and Distortion Functions 

The solution (3.19) involves summations over the harmonics m. It is obvious that 
when v=, 3~,, or V* is equal to an integer, the solution blows up. In fact, these are the 
first-order resonances of the sextupoles. When we are close to a particular resonance, 
we just take the term with an m that is closest to that V, and forget the rest. This 
is the way to look at the situation near a resonance. In the actual operation of the 
storage ring, however, we are always far away from all resonances except possibly 
during extraction. Then, all the harmonics are necessary. It is nice that, except right 
at a resonance, the summations over m can actually be performed using the formula 

e i(m@ + b) 
F = 

-?rcsc?rvei[b+“(e-T)l 0 < 6 < 2~ , 

m--v 
(3.29) 

we=-cc --k cot ?YY e ib e=o. 

Let us try one term in Eq. (3.19): 

A,,e km 
= &y3kc 

e i(Qzk -k m& - mo + a,) 

m - v, m - V, 

We get 

- vz@ + $‘,,k - %) o<ek-8<2a, 

- h@ + &k + W) 0<0-61,<2r, 

-i c 24sinsv, k 
sk cos Tv, e i(uz - vxB f hk) 0 = tik 

4ll these can be grouped together as 

$-i&(h) + Al($ i& , (3.30) 
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where the Eq. (3.26) has been used for a, and the set of distortion functions is 

B,(A) = 2si;Tv I: F $cos(i+zk - d’zl - %) 0 5 l$)zk - $1~1 5 2n,,z , 

AI(&) = B;(A) 0 < l&k - d’s1 < 27% (3.31) 

Note that the restriction 0 < l$,k - $,I 5 27rv, demands the summation over k for 
one complete revolution of the ring only. Therefore, at the same location but after 
one revolution, r/~= becomes gz + 27rv, and all the &k’s have to increase by 27rv, also 
in order to satisfy the restriction. Thus, the distortion functions have exactly t,he 
same values after one revolution. In other words, they are closed or periodic. 

Similarly, the other sums lead to 

c A3,,, e i@m 

m m-3v, 
= 5( -iB3 + A3)e i3h , 

F 

Bl,e @lm 

m - v, 
= (-iB + A)eih , 

B+,e @*m 

m - v* 
= (-iB* + A+)e ik , (3.32) 

where c#& = 24, 4~ 4,. The distortion functions introduced in Eq. (3.32) are given by 

B3(31i)z) = 2 sin131v D T $- 3(bbk - &I -xv=) 0 5 i&k - t+& 5 2TL’, , 

A3(3&) = B;(~$J,) o</$‘,k-$‘zI<2KVz, 

0 5 i&k - $‘,I 5 2% , 

4A) = B’($,) 0 < b&k -&I < 237% , 

B4Sd = 2si;7i,,* F Fcos(:?hk - d% - 7%) 0 5 I&k - $+I 5 27+ , 

MW = B;(b) 0 < l&k - $Atl < 27% , (3.33) 

where t+& = 24, f A and the prime denotes differentiation with respect to the 
argument. We see that Eqs. (3.31) and (3.33) conform with the definit,ion of the 
generic distortion functions of Eq. (2.9). It is obvious that all the A’s jump by 
an amount m, = Sk/4 or Sk/4 across a thin SeXtUpOk at location k due to the 
differentiation of the variable inside the absolute-value delimiters while the B’s are 
continuous but exhibit a cusp. Knowing B, and A, at location $J~, their values at 
another location $k = $J, + 01 are given by 

B:, = 2 sid.. Cos(~~ + (y - ~~,t - ~~a) , 
a 
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4. = -2si;,, sin(& + a - h - TG) , 
c? 

where we have assumed for simplicity that there is only one sextupole at location $Ok 
which is less than both $a and $h, (th e situation of many sextupoles can be desk 
with similarily). Also, the prime in Eqs. (3.34) and and (3.35) below does not imply 
differentiation. Expanding the sine and cosine, one easily gets 

B:, 

O( 

cos a sin 01 
A; = -sin a cos a 

(3.35) 

implying just a rotation of the vector (B,, A,) by the angle Q. Thus, a set of distortion 
functions obeys the three criteria set out in Section 2, which provide an easier and 
more physical way for its derivation. . 

III.5 Closed-orbit Distortion 

The sextupole has an average dipole effect on a charged particle, thus distorting 
the ideal closed orbit. After Floquet transformation, one of the equations of motion 
derived from the Hamiltonian Hs is 

(3.36) 

where x” is second derivative with respect to the Floquet phase GE. Therefore, across 
a thin sextupole of strength s or S, I is continuous but x’ jumps by an amount 

As’ = -32 + .Fy2 . (3.37) 

Substituting Eq. (2.1) for z and y and averaging over the instantaneous phases d5 
and c$,, we obtain 

AZ’=-;sd;+;ad;. (3.38) 
d 

Since the vector (r, .r’) rotates by the angle dz according to Eq. (3.36) in the region 
without any sextupole, the distortion, which depends on the amplitudes, obeys exactly 
the same three criteria as a set of distortion functions. The closed-orbit distortions 
can be computed in exactly the same way yielding 

W+,) = --2d:&(b) + 2d;B(+z) , 

St’(&) = -2dZAr($,) + 2d;A($,) (3.39) 

There is no distortion of y or y’ for the closed orbit because the right side of the 
equation for y, similar to Eq. (3.36), is proportional to zy which averages to zero. 
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III.6 Beam Shape in the Transverse Phase Planes 

We are now in a position to compute the distortion of the beam-shape projections. 
Comparing Eqs. (2.3) and (3.23), we get 

Mu = (-6u cos qL + 6u’sin 4,) + ISA, , 

d,M, = (6~ sin 4” + Su’cos 4*) + 64” (3.40) 

Substituting Eqs. (3.19), (3.22), (3.28), (3.30), and (3.32) into Eq. (3.40), we finally 
arrive at 

us = dz[(& sin 34, - B3 cos 3&) - (A, sin & - B1 cos d,)] 

-di[(A+ sin 4+ - B+ cos 4+) - (A- sin d- - B- cos +-)I , 

h = &[(A3 ~0s 34, + &sin 34,) + (AI cos & + B1 sin &)] 

-(-$/.&)[(A+ ~0s 4+ + B+ sin d+) + (A- cos d- + B- sin d-)] , 

My = -2d,d,[(A+ sin 4+ - B+ cos d+) + (A- sin d- - B- cos &)I , 

64, = -2&[2(A cos 4, + B sin &) + (A+ cos +4+ + B+ sin 4+) 

+ (A- cos qh- + B- sin d-)] (3.41) 

The above distortions are exactly those given by Eq. (2.6). 

III.7 Second-order Tuneshifts 

To obtain the second-order tuneshifts, we need to evaluate the second-order sex- 
tupole terms in the Hamiltonian H4. From the generating function Gs of Eq. (3.16), 
we get 

(Z)“‘” = (2Jzj3’* + 9(2J,)2P~‘2 G (,““& sin qarn + mAimvs sing,,) 

-3(2Jz)(2J&#” c ;B,; sinpr, + 
B +m 

m - V+ 
sinp+, + 

B-* 
sinp-, : 

m I m - v- ) 

and similar expression for (21,)‘~*(21,). Th en, the second-order terms in the Hamil- 
tonian is 

AHAx = z(Aarn, sin q.++ + 3A1,~ sin ql,,) x 
ln’ 

x 
1 
9(2J=)‘Po F ( mA_3& sin nm + mAtmvz sin qh) 

-3(2Jz)(2w0 5 ( zTzz sinpr, + mB_+mV, sinp+, + mBi;- sinp--)I 

+. 
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Betatron tunes are defined per revolution. We therefore average over 6’ or take only 
the e-independent terms. This leads to 

AH; Ieex = ~(w30 5 (,A;;, + ;‘y 

+ ~PJ,)zpa yg (;y;= + mBt;+ + Jy;-) 
+ 2(2Jx)(2&)/30~ mBA-, - B2m - 6A1mB1m cos(o11, - p,,) 

m + m - “- m - v, 

Now we need to sum over the harmonics using again Eq. (3.28). A particular term 
is 

c ATm m m--y, = -576Tfyn *yz z SkSk’ COShLk - $w I - ?%) (3.43) 

Written in terms of the distortion functions, we have 

c Af, = +p,S)k , 
m m--v, 

c Akn = -~pw* 1 m m-3v, 

c J% 

m m--v, 
= -gps)k ) 

k 

c m ,“_‘-,* = FgC(B*a)k 1 b 
F 

A1w31m cos(wm - PI,) 
m - v, 

= -gps)* . 

The tuneshifts are given by 

A,=y and Ayea;?. I Y 

(3.44) 

(3.45) 

Using Eqs. (3.42), (3.43), and (3.44), we obtain exactly the tuneshifts given by 
Eq. (2.10). 

IV. APPLICATIONS 

Here, we repeat two examples introduced by Collins’ illustrating beam-shape dis- 
tortions and betatron tuneshifts. 

IV.1 Beam-shape Distortions 

We try to look at the beam shape at a location along the storage ring where 
all the distortion functions A’s are zero. Then we have from Eq. (3.39) closed-orbit 
distortions 

6x = -2dzB1 + 2442B , 6x’ = 0 , 
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sy=o, by’ = 0 (4.1) 

The distortions in the amplitudes obtained from Eq. (3.41) reduce to 

6 = -dDsc~s 342 - & cm d,] + d;[B+ cos(2& + dI) - B- cos(26, _ d,)l , 

MA, = 2dzd,[B+ ~0424, + 4s) + B- cos(24, - ,$,)I (4.2) 

The projections of the beam shape in the z-z’ plane and y-y’ plane are plotted in 
Fig. 2. It is drawn with A,& = 0.1, d,BI = -0.05, &B+ = 0.1, A,& = 0.05, and 

A$ = 0.1. We see that the two circles in the linear theory have been distorted into 
a triangular shape and a rhombic shape. The center of the figure in the s-&plot is 
shifted. Also the thin-line circles become bands. The thickness of the bands is called 
‘smear’, which is a measure of the nonlinearity of the lattice. In this example, the 
smears can actually be computed. For example, in the x-x’ plot, at instantaneous 
phase &. = 0, 

M, = -A:(& - Bi) + A@+ - B-) cos 2&, 

Thus, the smear there is 

M&lax - dA,lmin = 2d;IB+ - B-1 

At phase angle 4, = n/2, 

&L = d;P+ 424, + r/2) - B- cos(2& - n/2)] , 

giving a smear of 

dA,lmx - k&i,, = 2d;lB+ + B-1 

Similarly, for the y-y’ plot, 

smear = 4d,d, IB+ + B- / at+,=O, 

smear = 4d,d,IB+ - B- 1 at I$, = : 

IV.2 Tuneshifts 

Consider a mock design of the Superconducting Super Collider (SSC). Within 
each half cell of 40”, there are five superconducting dipoles which have a systematic 
sextupole at low field. We would like it to be corrected by the chromaticity adjustment 
of sextupoles at the quads. Is this good enough? In Table II, the beta-functions, the 
Floquet phases, and the sextupoles at the quads SF/2 and So/2 are calculated by the 
usual thin lens formulae. The distortion functions are calculated using Eqs. (3.31) 
and (3.33) taking the A’s at the quads to be zero for closure. Here, Ps is taken as the 
maximum 0 and 6’ is the bend angle of a half cell. 

We have for a full cell, 

C(BsSh = -0.‘-‘164(PoM’)2 , z(B+x)k = -0.0205(/30bzt9)2 , 
k k 
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+ 2d;IB+ - B- 1 

-B-l 

4dAyP+ + B-l 

Figure 2: Beam shape projections onto the horizontal and 
vertical phase planes with the addition of sextupoles. 
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T(B~Sh = -O.O052(Pob,@* , x(B-S)k = 0.0018(~,-,b2~)* , 
k 

?&B)k = -0.0024(/30b20)* , c(&)k = -0.0101 (/?ob20)2 
k 

The tuneshifts are systematic. For N cells, using Eq. (2.10), they are 

AU, = (0.0025d; + 0.0022d;)N(&,bz0)2 , 

Av, = (06022d; + 0.0050d;)N(~sb28)2 

quad 
F 

-r 

- 

1 .oo 
.217 

0 
0 

s -.325 
3 -.325 
s -.071 

.18 

,785 
.284 
3.48 
12.54 

,200 
,139 
I 

,050 

& .0293 .0141 
Bl .0089 .0035 
B+ ‘.0045 -.0124 
B- .0105 .0033 
II ..OOll -.0022 

- J- I 

irjz 
.50 

alpo, 
.34 

7 .621 
,371 
7.43 
21.04 

,483 
,483 

12.45 
27.55 

.200 .200 

.098 .067 

.058 ,067 

.0034 -.0039 

.0003 -.0017 
-.0119 -.0056 
.0014 .0023 

-.0025 -.0017 

itio 

h 

r 
.82 

quad 
D 

,371 ,284 ,217 
,621 ,785 1.00 

18.96 27.46 40 
32.57 36.51 40 

,200 
,045 
.076 

,200 
,034 
,084 

..0057 
-.0014 
.0219 
.0033 
.0081 

-.537 
-.054 
- ,250 

‘.0074 
‘.0023 
.0054 
.0037 
.0014 

.0032 @oW’) 

.0015 (P&6’) 

.0447 (hbz~) 
-.0028 W’oW 
.0222 (Pobzq 

T- unit 

2 
degrees 
degrees 

(P%) 
(BoW) 

(4.3) 

Table II: Lattice values including distortion functions 
for a half-cell of a mock design of the SSC. 

In a normal proton ring fJ& N 3 meters. For the Tevatron ring, N = 100 and 

bz - 1.3/m*. Then, at A, = A, = 1 cm, Av, = 0.0012 which is indeed a small 
number. For the SSC, however, N = 400 and bz - 33/m2. Again at A, = A, = 1 cm; 

Avv > 2 units, showing that the design is no good. Collins points out that all these 
can be computed using a hand-held calculator and tracking will add nothing more. 

APPENDIX 

We take only one part of the Hamiltonian Ha, 

H3(a, I) = VI + (21)3’z c Ax,,, sin qzrn 
m 

(5.1) 

and try to find the generating function Gs(a, J; 0) so that the new Hamiltonian 

&(b, J) = &(a, 1) + ae (5.2) 
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is a constant independent of a and 0 when second order in Azm is neglected. In above, 

q3m = 3a - d + ff3m , (5.3) 

and we have left out the subscripts I or y for clarity. Since this is a perturbative 
canonical transformation, the generating function must be of the form 

G3(a, J; 0) = aJ + c A;,,, cos qs,,, 
m 

We therefore get 
2G3 
ae = T m&, sin am , 

and 

= J-x3A$,sinqsm 
m 

(5.4) 

(5.5) 

(5.6) 

Substituting Eqs. (5.5) and (5.6) into Eq. (5.2) and demanding that A3,,, cancels up 
to first order, A:,,, can be solved and we obtain 

Gs(a, J;O) = aJ - (2J)3”F mAT;v cosq3,,, (5.7) 

The other parts of the generating function can be obtained similarily. 
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